Increased Incidence and Clinical Picture of Childhood Narcolepsy following the 2009 H1N1 Pandemic Vaccination Campaign in Finland

Partinen M, Saarenpää-Heikkilä O, Ilveskoski I, Hublin C, Linna M, Olsén P, et al. PLoS One. 2012;7(3):e33723.

Background: Narcolepsy is a rare neurological sleep disorder especially in children who are younger than 10 years. In the beginning of 2010, an exceptionally large number of Finnish children suffered from an abrupt onset of excessive daytime sleepiness (EDS) and cataplexy. Therefore, we carried out a systematic analysis of the incidence of narcolepsy in Finland between the years 2002-2010.

Methods: All Finnish hospitals and sleep clinics were contacted to find out the incidence of narcolepsy in 2010. The national hospital discharge register from 2002 to 2009 was used as a reference.

Findings: Altogether 335 cases (all ages) of narcolepsy were diagnosed in Finland during 2002-2009 giving an annual incidence of 0.79 per 100,000 inhabitants (95% confidence interval 0.62-0.96). The average annual incidence among subjects under 17 years of age was 0.31 (0.12-0.51) per 100,000 inhabitants. In 2010, 54 children under age 17 were diagnosed with narcolepsy (5.3/100,000; 17-fold increase). Among adults ≥20 years of age the incidence rate in 2010 was 0.87/100,000, which equals that in 2002-2009. Thirty-four of the 54 children were HLA-typed, and they were all positive for narcolepsy risk allele DQB1*0602/DRB1*15. 50/54 children had received Pandemrix vaccination 0 to 242 days (median 42) before onset. All 50 had EDS with abnormal multiple sleep latency test (sleep latency <8 min and ≥2 sleep onset REM periods). The symptoms started abruptly. Forty-seven (94%) had cataplexy, which started at the same time or soon after the onset of EDS. Psychiatric symptoms were common. Otherwise the clinical picture was similar to that described in childhood narcolepsy.

Interpretation: A sudden increase in the incidence of abrupt childhood narcolepsy was observed in Finland in 2010. We consider it likely that Pandemrix vaccination contributed, perhaps together with other environmental factors, to this increase in genetically susceptible children.

This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license.

MMLAP and other EU Projects

Health system analysis to support capacity development in response to the threat of pandemic influenza in Asia
Making society an active participant in water adaptation to global change
Public Participation in Developing a Common Framework for Assessment and Management of Sustainable Innovation
Engaging all of Europe in shaping a desirable and sustainable future
Expect the unexpected and know how to respond
Driving innovation in crisis management for European resilience
Effective communication in outbreak management: development of an evidence-based tool for Europe
Solutions to improve CBRNe resilience
Network for Communicable Disease Control in Southern Europe and Mediterranean Countries
Developing the framework for an epidemic forecast infrastructure
Strengthening of the national surveillance system for communicable diseases
Surveillance of vaccine preventable hepatitis
European monitoring of excess mortality for public health action
European network for highly infectious disease
Dedicated surveillance network for surveillance and control of vaccine preventable diseases in the EU
Modelling the spread of pandemic influenza and strategies for its containment and mitigation
Cost-effectiveness assessment of european influenza human pandemic alert and response strategies
Bridging the gap between science, stakeholders and policy makers
Promotion of immunization for health professionals in Europe
Towards inclusive research programming for sustainable food innovations
Addressing chronic diseases and healthy ageing across the life cycle
Medical ecosystem – personalized event-based surveillance
Studying the many and varied economic, social, legal and ethical aspects of the recent developments on the Internet, and their consequences for the individual and society at large
Get involved in the responsible marine research and innovation
Knowledge-based policy-making on issues involving science, technology and innovation, mainly based upon the practices in Parliamentary Technology Assessment
Assessment of the current pandemic preparedness and response tools, systems and practice at national, EU and global level in priority areas
Analysis of innovative public engagement tools and instruments for dynamic governance in the field of Science in Society
Public Engagement with Research And Research Engagement with Society
Computing Veracity – the Fourth Challenge of Big Data
Providing infrastructure, co-ordination and integration of existing clinical research networks on epidemics and pandemics
Promote vaccinations among migrant population in Europe
Creating mechanisms for effectively tackling the scientific and technology related challenges faced by society
Improve the quality of indoor air, keeping it free from radon
Improving respect of ethics principles and laws in research and innovation, in line with the evolution of technologies and societal concerns
Investigating how cities in the West securitise against global pandemics
Creating a structured dialogue and mutual learning with citizens and urban actors by setting up National Networks in 10 countries across Europe
Identifying how children can be change agents in the Science and Society relationship
Establishing an open dialogue between stakeholders concerning synthetic biology’s potential benefits and risks
Transparent communication in Epidemics: Learning Lessons from experience, delivering effective Messages, providing Evidence